organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Frank R. Fronczek^a* and Nikolaus H. Fischer^b

^aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and ^bDepartment of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA

Correspondence e-mail: ffroncz@lsu.edu

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.042 wR factor = 0.090 Data-to-parameter ratio = 11.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Melampodinone

The title compound, methyl $\{1aS-[1aR^*, 2aR^*, 3aR^*, 4E, 5aS^*, 8aR^*,9R^*(2S^*,3S^*),9aR^*$]-9-{[(2,3-dimethyloxiranyl)carbonyl]oxy}-2a,3a,5a,7,8,8a,9,9a-octahydro-4-methyl-8-methylene-2,7-dioxobisoxireno[4,5:7,8]cyclodeca[1,2-b]furan-1a(2H)-carboxylate, C₂₁H₂₂O₁₀, is an oxidation product of melampodin A. It has Z' = 2, and the conformations of the ten-membered rings in the two molecules are quite similar, with a mean difference of 2.4° between endocyclic torsion angles.

Received 21 June 2002 Accepted 4 July 2002 Online 19 July 2002

Comment

The structure of melampodin A, which differs from the title compound, (I), only by having a cis-double bond at C1=C10 and an OH group at C9 instead of the ketone at C1 and epoxide at C9-C10, has been reported, based on X-ray (Watkins et al., 1973) and neutron (Neidle & Rogers, 1972) data. CrO₃ oxidation of melampodin A from Melampodium leucanthum has led to the title keto compound (Fischer et al., 1975). The formation of a rearranged ketone at C1 rather than C9 appears to result from a relief of strain in the tenmembered ring, and the structure of (I) was studied in order to determine the ten-ring conformation.

There are two independent molecules in the asymmetric unit of (I), and their conformations are described by the endocyclic torsion angles in Table 1. The ten-membered rings of the two molecules have very similar conformations, with a mean difference of 2.4° between endocyclic torsion angles, the maximum difference being only 4.0 (4) $^{\circ}$ for the torsion angle about C1-C10. This conformation differs from the typical melampolide conformation (Fronczek et al., 1986, and references therein) mainly in the portion of the ring near the C1-C2 bond. Typical melampolides tend to have endocyclic torsion angles near zero, -100° , and 70° about C1=C10, C1-C2, and C2-C3, respectively.

0874

Fronczek and Fischer • C₂₁H₂₂O₁₀

© 2002 International Union of Crystallography

Printed in Great Britain - all rights reserved

The conformations of the epoxyangelate substituents at C8 in the two independent molecules of melampodinone differ by somewhat more than those of the ten-membered rings. The torsion angles about C8–O8 differ by 11.8 (3)°, and those about C17–C18 by 21.7 (4)°.

Cell dimensions at 293 K are a = 7.777 (2), b = 11.681 (4), and c = 23.812 (4) Å, and $\beta = 97.67$ (2)°; thus, Z' = 2 is not a result of a phase change on cooling.

Experimental

The preparation of the title compound by epoxidation of melampodin A using CrO_3 in glacial acetic acid has been previously described (Fischer *et al.*, 1975). Crystals were grown from methanol.

 $D_{\rm r} = 1.380 {\rm Mg} {\rm m}^{-3}$

Cell parameters from 6013

Mo $K\alpha$ radiation

reflections

 $\mu = 0.11 \text{ mm}^{-1}$

Fragment, colorless

 $0.47 \times 0.35 \times 0.25$ mm

 $\theta = 2.5 - 30.5^{\circ}$

T = 120 K

Crystal data

 $\begin{array}{l} C_{21}H_{22}O_{10} \\ M_r = 434.39 \\ \text{Monoclinic, } P2_1 \\ a = 7.646 \ (2) \ \text{\AA} \\ b = 11.633 \ (2) \ \text{\AA} \\ c = 23.709 \ (4) \ \text{\AA} \\ \beta = 97.385 \ (6)^{\circ} \\ V = 2091.3 \ (7) \ \text{\AA}^3 \\ Z = 4 \end{array}$

Data collection

KappaCCD diffractometer (with	5688 reflections with $I > 2\sigma(I)$
Oxford Cryosystems Cryostream	$R_{\rm int} = 0.025$
cooler)	$\theta_{\rm max} = 30.5^{\circ}$
ω scans with κ offsets	$h = -10 \rightarrow 10$
23 672 measured reflections	$k = -16 \rightarrow 16$
6629 independent reflections	$l = -33 \rightarrow 33$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0326P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.6091P]
$wR(F^2) = 0.090$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
6629 reflections	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
568 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.0074 (11)

Table 1

Selected geometric parameters (Å, °).

O3-C1	1.201 (3)	O3'-C1'	1.199 (3)
O4-C10	1.442 (2)	O4′-C10′	1.435 (3)
O4-C9	1.442 (3)	O4′-C9′	1.437 (3)
O7-C2	1.434 (3)	O7′-C2′	1.432 (3)
O7-C3	1.435 (3)	O7'-C3'	1.435 (4)
O10-C18	1.436 (3)	O10′-C18′	1.440 (3)
O10-C19	1.449 (3)	O10′-C19′	1.445 (3)
C4-C5	1.338 (3)	C4′-C5′	1.338 (3)
C10-C1-C2-C3	62.6 (3)	C10'-C1'-C2'-C3'	65.8 (3)
C1-C2-C3-C4	-3.4(3)	C1'-C2'-C3'-C4'	-4.4(4)
C2-C3-C4-C5	-86.3(3)	C2'-C3'-C4'-C5'	-87.9(3)
C3-C4-C5-C6	162.63 (19)	C3'-C4'-C5'-C6'	160.5 (2)
C4-C5-C6-C7	-123.9(2)	C4′-C5′-C6′-C7′	-121.0(3)
C5-C6-C7-C8	84.9 (2)	C5'-C6'-C7'-C8'	86.3 (2)
C17-O8-C8-C7	137.91 (17)	C17'-O8'-C8'-C7'	126.12 (19)
C6-C7-C8-C9	-45.4(2)	C6′-C7′-C8′-C9′	-48.3(2)
C7-C8-C9-C10	-67.1(3)	C7'-C8'-C9'-C10'	-71.1(3)
C8-C9-C10-C1	155.57 (19)	C8′-C9′-C10′-C1′	154.2 (2)
C2-C1-C10-C9	-110.6(2)	C2'-C1'-C10'-C9'	-106.6(3)
O8-C17-C18-C20	-42.3 (3)	O8' - C17' - C18' - C20'	-20.6(3)

Figure 1

The atom-numbering scheme for the unprimed molecule, with ellipsoids at the 50% probability level.

Figure 2

The atom-numbering scheme for the primed molecule, with ellipsoids at the 50% probability level.

Friedel pairs were averaged before refinement. H atoms were placed in calculated positions, with C–H distances in the range 0.95–1.00 Å and $U_{\rm iso} = 1.2U_{\rm eq}$ of the attached atom ($1.5U_{\rm eq}$ for methyl groups), and thereafter treated as riding. A torsional parameter was refined for each methyl group. The absolute configuration could not be determined, and was assigned based on the known configuration of the starting material (Neidle & Rogers, 1972).

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fischer, N. H., Wiley, R. A. Jr, Lin, H.-N., Karimian, K. & Politz, S. M. (1975). *Phytochemistry*, **14**, 2241–2245.

Fronczek, F. R., Vargas, D. & Fischer, N. H. (1986). Acta Cryst. C42, 1061–1063. Neidle, S. & Rogers, D. (1972). J. Chem. Soc. Chem. Commun. pp. 140–141. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Watkins, S. F., Fischer, N. H. & Bernal, I. (1973). Proc. Natl Acad. Sci. USA, 70, 2434–2438.