Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Frank R. Fronczek ${ }^{\mathbf{a} *}$ and Nikolaus H. Fischer ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and ${ }^{\text {b }}$ Department of Pharmacognosy, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA

Correspondence e-mail: ffroncz@lsu.edu

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.090$
Data-to-parameter ratio $=11.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Melampodinone

The title compound, methyl $\left\{1 \mathrm{a} S-\left[1 \mathrm{a} R^{*}, 2 \mathrm{a} R^{*}, 3 \mathrm{a} R^{*}, 4 E, 5 \mathrm{a} S^{*},-\right.\right.$ $\left.\left.8 \mathrm{a} R^{*}, 9 R^{*}\left(2 S^{*}, 3 S^{*}\right), 9 \mathrm{a} R^{*}\right]\right\}-9-\{[(2,3-$ dimethyloxiranyl)carbon-yl]oxy\}-2a,3a,5a, 7,8,8a,9,9a-octahydro-4-methyl-8-methylene-2,7-dioxobisoxireno[4,5:7,8]cyclodeca[1,2-b]furan-1a(2H)-carboxylate, $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{10}$, is an oxidation product of melampodin A. It has $Z^{\prime}=2$, and the conformations of the ten-membered rings in the two molecules are quite similar, with a mean difference of 2.4° between endocyclic torsion angles.

Comment

The structure of melampodin A, which differs from the title compound, (I), only by having a cis-double bond at $\mathrm{C} 1=\mathrm{C} 10$ and an OH group at C 9 instead of the ketone at C 1 and epoxide at C9-C10, has been reported, based on X-ray (Watkins et al., 1973) and neutron (Neidle \& Rogers, 1972) data. CrO_{3} oxidation of melampodin A from Melampodium leucanthum has led to the title keto compound (Fischer et al., 1975). The formation of a rearranged ketone at C1 rather than C9 appears to result from a relief of strain in the tenmembered ring, and the structure of (I) was studied in order to determine the ten-ring conformation.

(I)

There are two independent molecules in the asymmetric unit of (I), and their conformations are described by the endocyclic torsion angles in Table 1. The ten-membered rings of the two molecules have very similar conformations, with a mean difference of 2.4° between endocyclic torsion angles, the maximum difference being only $4.0(4)^{\circ}$ for the torsion angle about $\mathrm{C} 1-\mathrm{C} 10$. This conformation differs from the typical melampolide conformation (Fronczek et al., 1986, and references therein) mainly in the portion of the ring near the $\mathrm{C} 1-$ C2 bond. Typical melampolides tend to have endocyclic torsion angles near zero, -100°, and 70° about $\mathrm{C} 1=\mathrm{C} 10, \mathrm{C} 1-$ C 2 , and $\mathrm{C} 2-\mathrm{C} 3$, respectively.

Received 21 June 2002
Accepted 4 July 2002
Online 19 July 2002

The conformations of the epoxyangelate substituents at C8 in the two independent molecules of melampodinone differ by somewhat more than those of the ten-membered rings. The torsion angles about $\mathrm{C} 8-\mathrm{O} 8$ differ by $11.8(3)^{\circ}$, and those about $\mathrm{C} 17-\mathrm{C} 18$ by 21.7 (4) ${ }^{\circ}$.

Cell dimensions at 293 K are $a=7.777$ (2), $b=11.681$ (4), and $c=23.812$ (4) \AA, and $\beta=97.67$ (2) ${ }^{\circ}$; thus, $Z^{\prime}=2$ is not a result of a phase change on cooling.

Experimental

The preparation of the title compound by epoxidation of melampodin A using CrO_{3} in glacial acetic acid has been previously described (Fischer et al., 1975). Crystals were grown from methanol.

Crystal data
$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{10}$
$M_{r}=434.39$
Monoclinic, $P 2_{1}$
$a=7.646(2) \AA$
$b=11.633(2) \AA$
$c=23.709(4) \AA$
$\beta=97.385(6)^{\circ}$
$V=2091.3(7) \AA^{3}$
$Z=4$

Data collection

KappaCCD diffractometer (with Oxford Cryosystems Cryostream cooler)
ω scans with κ offsets
23672 measured reflections
6629 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.090$
$S=1.05$
6629 reflections
568 parameters
H -atom parameters constrained
$D_{x}=1.380 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6013 reflections
$\theta=2.5-30.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Fragment, colorless
$0.47 \times 0.35 \times 0.25 \mathrm{~mm}$

5688 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=30.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-16 \rightarrow 16$
$l=-33 \rightarrow 33$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0326 P)^{2}\right. \\
& +0.6091 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.26 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0074 \text { (11) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

O3-C1	1.201 (3)	$\mathrm{O}^{\prime}-\mathrm{Cl}^{\prime}$	1.199 (3)
O4-C10	1.442 (2)	$\mathrm{O} 4^{\prime}-\mathrm{C} 10^{\prime}$	1.435 (3)
O4-C9	1.442 (3)	O4'- ${ }^{\prime} 9^{\prime}$	1.437 (3)
O7-C2	1.434 (3)	O7'-C2	1.432 (3)
O7-C3	1.435 (3)	$\mathrm{O} 7^{\prime}-\mathrm{C} 3^{\prime}$	1.435 (4)
O10-C18	1.436 (3)	$\mathrm{O} 10^{\prime}-\mathrm{C} 18^{\prime}$	1.440 (3)
O10-C19	1.449 (3)	$\mathrm{O} 10^{\prime}-\mathrm{C} 19^{\prime}$	1.445 (3)
C4-C5	1.338 (3)	$\mathrm{C} 4^{\prime}-\mathrm{C}^{\prime}$	1.338 (3)
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	62.6 (3)	$\mathrm{C} 10^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}$	65.8 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-3.4 (3)	$\mathrm{C}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C}^{\prime}-\mathrm{C4}^{\prime}$	-4.4 (4)
C2-C3-C4-C5	-86.3 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}$	-87.9 (3)
C3-C4-C5-C6	162.63 (19)	$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}$	160.5 (2)
C4-C5-C6-C7	-123.9 (2)	$\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime}-{\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}}^{\prime}$	-121.0 (3)
C5-C6-C7-C8	84.9 (2)	$\mathrm{C} 5^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 8^{\prime}$	86.3 (2)
C17-O8-C8-C7	137.91 (17)	$\mathrm{C} 17^{\prime}-\mathrm{O}^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 7^{\prime}$	126.12 (19)
C6-C7-C8-C9	-45.4 (2)	$\mathrm{C} 6^{\prime}-\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}$	-48.3 (2)
C7-C8-C9-C10	-67.1 (3)	$\mathrm{C} 7^{\prime}-\mathrm{C} 8^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 10^{\prime}$	-71.1 (3)
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 1$	155.57 (19)	$\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{C} 1^{\prime}$	154.2 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	-110.6 (2)	$\mathrm{C} 2^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{C} 9^{\prime}$	-106.6 (3)
$\mathrm{O} 8-\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 20$	-42.3 (3)	$\mathrm{O} 8^{\prime}-{\mathrm{C} 17^{\prime}}^{\prime}-\mathrm{C} 18^{\prime}-\mathrm{C} 20^{\prime}$	-20.6 (3)

Figure 1
The atom-numbering scheme for the unprimed molecule, with ellipsoids at the 50% probability level.

Figure 2
The atom-numbering scheme for the primed molecule, with ellipsoids at the 50% probability level.

Friedel pairs were averaged before refinement. H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-$ $1.00 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the attached atom ($1.5 U_{\text {eq }}$ for methyl groups), and thereafter treated as riding. A torsional parameter was refined for each methyl group. The absolute configuration could not be determined, and was assigned based on the known configuration of the starting material (Neidle \& Rogers, 1972).

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The purchase of the diffractometer was made possible by grant No. LEQSF(1999-2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

organic papers

Fischer, N. H., Wiley, R. A. Jr, Lin, H.-N., Karimian, K. \& Politz, S. M. (1975). Phytochemistry, 14, 2241-2245.
Fronczek, F. R., Vargas, D. \& Fischer, N. H. (1986). Acta Cryst. C42, 1061-1063. Neidle, S. \& Rogers, D. (1972). J. Chem. Soc. Chem. Commun. pp. 140-141.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Watkins, S. F., Fischer, N. H. \& Bernal, I. (1973). Proc. Natl Acad. Sci. USA, 70, 2434-2438.

